Moving ICA and Time-Frequency Analysis in Event-Related EEG Studies of Selective Attention
نویسنده
چکیده
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Elements of Selective Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1 Selective Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Networks of Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Recording Neural Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Fields and Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Reconstructing EEG Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Stimulus-Evoked Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Neural Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Visualization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Time-frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Biharmonic Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 One-dimensional Spline Interpolation . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Multi-dimensional Spline Interpolation . . . . . . . . . . . . . . . . . . . . 14 2.3 The Infomax Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Deriving Extended Infomax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Separating Suband Super-Gaussian Sources . . . . . . . . . . . . . 18 3 Block-Based EEG-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 High-Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Parallel Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Blockwise Infomax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 Cluster Technique Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 The Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.1 The Hungarian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.2 A Hungarian Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Event-Related Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Task Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Evaluating Blockwise Infomax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 Model Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 Surrogate EEG Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.3 ERP Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Early Evoked Complexes and Alpha Ringing . . . . . . . . . . . . . . . . . . . . . . 37
منابع مشابه
Moving-window Ica Decomposition of Eeg Data Reveals Event-related Changes in Oscillatory Brain Activity
Decomposition of temporally overlapping subepochs from 3-s electroe~icepl~alographic (EEG) epochs time locked to the presentation of visual target stimuli in a selective attention task produced many more components with common scalp maps before stimulus delivery than after it. In particular, this was the case for components accounting for posterior alpha and central mu rhythms. Moving-window IC...
متن کاملImaging human EEG dynamics using independent component analysis.
This review discusses the theory and practical application of independent component analysis (ICA) to multi-channel EEG data. We use examples from an audiovisual attention-shifting task performed by young and old subjects to illustrate the power of ICA to resolve subtle differences between evoked responses in the two age groups. Preliminary analysis of these data using ICA suggests a loss of ta...
متن کاملMining event-related brain dynamics.
This article provides a new, more comprehensive view of event-related brain dynamics founded on an information-based approach to modeling electroencephalographic (EEG) dynamics. Most EEG research focuses either on peaks 'evoked' in average event-related potentials (ERPs) or on changes 'induced' in the EEG power spectrum by experimental events. Although these measures are nearly complementary, t...
متن کاملAnalysis and visualization of single-trial event-related potentials.
In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data a...
متن کاملEvent-Related Brain Dynamics in Continuous Sustained-Attention Tasks
Event-related brain dynamics of electroencephalographic (EEG) activity in a continuous compensatory tracking task (CTT) and in a continuous driving simulation were analyzed by independent component analysis (ICA) and time-frequency techniques. We showed that changes in the level of subject performance are accompanied by distinct changes in EEG spectrum of a class of bilateral posterior independ...
متن کامل